The kinetics and thermodynamics of quinone-semiquinonehydroquinone systems under physiological conditions

Vitaly A. Roginsky, ${ }^{a}$ Leonid M. Pisarenko, ${ }^{a}$ Wolf Bors ${ }^{* b}$ and Christa Michel ${ }^{b}$
${ }^{a}$ N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 117977 Moscow, Russia
${ }^{b}$ Institut für Strahlenbiologie, GSF Forschungszentrum für Umwelt und Gesundheit, D-85764 Neuherberg, Germany

Received (in Cambridge) 1st October 1998, Accepted 16th February 1999

The steady-state concentration of semiquinones (Q^{--}) determined by EPR in the mixtures of eleven alkyl-, methoxyand chloro-substituted 1,4-benzoquinones as well as 1,4-naphthoquinone (Q) with corresponding hydroquinones $\left(\mathrm{QH}_{2}\right)$ in aqueous buffer, pH 7.40 , was used to calculate a constant for equilibrium (1) $\mathrm{Q}+\mathrm{QH}_{2} \rightleftharpoons \mathrm{Q}^{\cdot-}+\mathrm{Q}^{\cdot-}+$ $2 \mathrm{H}^{+}\left(k_{1} ; 2 k_{-1} ; K_{1}=k_{1} / 2 k_{-1}\right)$. The rate constants for comproportionation between Q and QH_{2}, k_{1}, were calculated from the combination of K_{1} determined in this work and $2 k_{-1}$ reported previously. The Nernst equation was applied to calculate the change in one-electron reduction potential $\Delta E_{1}=E\left(\mathrm{Q} / \mathrm{Q}^{-}\right)-E\left(\mathrm{Q}^{-} / \mathrm{QH}_{2}\right)$ in equilibrium (1). The $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ values were calculated from ΔE_{1} and the values of $E\left(\mathrm{Q}^{-} \mathrm{Q}^{-}\right)$known from the literature. The correlations between $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ and $E\left(\mathrm{Q} / \mathrm{Q}^{-}\right)$as well as between $\Delta E_{1}\left(k_{1}\right)$ and $E\left(\mathrm{Q} / \mathrm{Q}^{-}\right)$are discussed. The values of ΔE_{1} and k_{1} are suggested to be the key factors governing the autoxidation of QH_{2}.

Introduction

The reactivity and thermodynamic properties of quinones (Q) and their reduced forms, semiquinones $\left(\mathrm{Q}^{--}\right)$and hydroquinones $\left(\mathrm{QH}_{2}\right)$, are related to many biological problems including quinone cytotoxicity ${ }^{1,2}$ application of quinones as antitumor agents, ${ }^{2,3}$ electron transfer, ${ }^{4}$ and the functioning of the antioxidant defense system. ${ }^{5}$ There are several equilibria involving $\mathrm{Q}, \mathrm{Q}^{--}$and QH_{2} in chemical and biological systems. The equilibrium (1) and its constituents, disproportionation of Q^{--}(reaction (-1)) and comproportionation between Q

$$
\mathrm{Q}+\mathrm{QH}_{2} \stackrel{(1)}{(-1)} \mathrm{Q}^{\cdot-}+\mathrm{Q}^{\cdot-}+2 \mathrm{H}^{+} \quad(1),(-1)
$$

and QH_{2} (reaction(1)), are the most fundamental. Knowledge of this equilibrium constant, $K_{1}=k_{1} / 2 k_{-1}$, along with the rate constants for elementary reactions (-1) and (1), $2 k_{-1}$ and k_{1}, opens up many opportunities to predict the reactivity of Q , $\mathrm{Q}^{{ }^{-}}$, and QH_{2} and the behavior of these species in various chemical and biological systems.

The value of $2 k_{-1}$ determines to a significant degree the stability of Q^{--}and its steady-state concentration. Other things being equal, the lower $2 k_{-1}$ the more significant becomes the role of other reactions with participation of Q^{--}. Much attention has been given to the determination of $2 k_{-1}$, basically using pulse radiolysis combined with UV-Vis spectrophotometry (refs. 6-9 and references therein). Surprisingly, the quantitative information on the disproportionation of substituted 1,4-benzosemiquinones was until recently very restricted though the kinetics of this process with Q^{--}produced from substituted naphthoquinones and anthraquinones and Q with more complex structures have been studied in detail. Our recent work ${ }^{9}$ has partly eliminated this gap. K_{1} was previously reported for many $\mathrm{Q} / \mathrm{QH}_{2}$ couples but only a few of them were determined at physiological $\mathrm{pH} .{ }^{10-13}$ When K_{1} and $2 k_{-1}$ are known, this allows us to calculate the rate constant for reaction (1), a parameter which significantly governs the oxidizability of QH_{2} by molecular oxygen. ${ }^{14}$ Previously a k_{1} value has been reported only for the non-substituted 1,4 -
benzoquinone/1,4-hydroquinone couple. ${ }^{15}$ Using the Nernst equation, K_{1} may be converted into the difference in oneelectron reduction potential in equilibrium (1), ΔE_{1}, that represents the combination of $E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)$ and $E\left(\mathrm{Q}^{-} / \mathrm{QH}_{2}\right)$. Eqn. (2) may be used to calculate $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ from ΔE_{1}

$$
\begin{equation*}
\Delta E_{1}=E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)-E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right) \tag{2}
\end{equation*}
$$

provided that $E\left(\mathrm{Q} / \mathrm{Q}^{-}\right)$is known. While considerable attention was paid to the determination of $E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)$, the values of $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ in aqueous solutions have been reported only for a few $\mathrm{QH}_{2}{ }^{16}$ Meanwhile, $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ determines to a large extent the reactivity of Q^{--}and QH_{2}, and thus this parameter is of vital interest for $\mathrm{Q} / \mathrm{QH}_{2}$ chemistry and biochemistry.

The present work is devoted to the EPR determination of K_{1} from a steady-state concentration of Q^{--}in the mixtures of Q and QH_{2} for eleven $\mathrm{Q} / \mathrm{QH}_{2}$ couples presented in Scheme 1. These data were used to calculate $k_{1}, \Delta E_{1}$, and $E\left(\mathrm{Q}^{-} / \mathrm{QH}_{2}\right)$ and to establish the correlation between various one-electron reduction potentials.

Experimental

The quinones and hydroquinones studied in this work are presented in Scheme 1. Q 1, Q 5, Q 6, Q 7, Q 10, and Q 11 were purchased from Aldrich; Q 2 and $\mathrm{QH}_{2} 2$ from Merck; QH_{2} 4 and $\mathrm{QH}_{2} 11$ from Fluka, Q 8 from Lancaster, Q 9 from Sigma. Q 3 and Q 4 were prepared via the oxidation of $\mathrm{QH}_{2} 3$ and QH_{2} 4 with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ in the $1: 1$ mixture of benzene and diethyl ether. $\mathrm{QH}_{2} \mathbf{1}, \mathrm{QH}_{2} 5, \mathrm{QH}_{2} \mathbf{6}, \mathrm{QH}_{2} 7, \mathrm{QH}_{2} \mathbf{8}, \mathrm{QH}_{2} 9$ and $\mathrm{QH}_{2} \mathbf{1 0}$ were prepared by the reduction of corresponding Q by Zn powder in acetic acid followed by removing the solvent with a rotary evaporator and further extraction of QH_{2} with an appropriate organic solvent. Both purchased and synthesized Q and QH_{2} were purified by recrystallization, sublimation under vacuum or using a silica gel ($40-100 \mu \mathrm{~m}$) column with CHCl_{3} as an eluent. Sodium phosphates, $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$, of highest grade used to prepare buffer solutions, were purchased from Merck. Other reagents were of the highest available grade.

Q

Q-
$R^{1} \quad R^{2} \quad R^{3}$
R^{4}
1

Me

Et

Bu^{t}
Me
Cl
OMe
Me
Cl

Q 11

Q-11

QH_{2}

H
H

H
Me
H
H
OMe
Cl

$\mathrm{QH}_{2} 11$

Scheme 1 The structures of quinones, hydroquinones and semiquinones studied.

Aqueous solutions were prepared with doubly distilled water. Experiments were performed at $37^{\circ} \mathrm{C}$ with 50 mM phosphate buffer, $\mathrm{pH} 7.40 \pm 0.02$, (unless otherwise indicated), which was prepared by mixing fifty millimolar solutions of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ without adding any acid or base. Solutions of the individual phosphates used for the buffer preparation were purged from traces of transition metals by Chelex-100 resin (Bio-Rad) using a batch method. ${ }^{17}$ Stock solutions of Q and QH_{2} were prepared, depending on solubility, with water or aqueous dimethyl sulfoxide (DMSO).

Steady-state concentration of Q^{--}in the mixture of Q and QH_{2} used to calculate K_{1} was determined by EPR in a flat quartz cell with a Varian E12 spectrometer (Varian, USA) equipped with a TE_{104} dual cavity and temperature controller. Solutions containing Q and corresponding QH_{2} were prepared by adding a certain volume of stock solutions of Q and QH_{2}. Both stock solutions and buffer were argon-bubbled prior to mixing. The reaction mixture was immediately transferred using a microsyringe into a flat EPR cell flushed with argon. $10 \mu \mathrm{M}$ solution of the aminoxyl stable radical TEMPO in benzene placed into one of the cavities was used as a reference standard for the determination of the absolute concentration. Instrument settings were as follows: microwave power, 5 mW ; modulation frequency, 12.5 kHz ; modulation amplitude, 0.63 G (for determination of $\left[\mathrm{Q}^{-}\right]$) or 0.05 G (for determination of hyperfine splitting parameters). The absolute concentration of Q^{--}was calculated by double integrating EPR spectrum of $\mathrm{Q}^{\cdot-}$ and normalizing the obtained value to the intensity of the standard. The protocol we followed for EPR determinations has been reported in more detail elsewhere..$^{13,18} \mathrm{~A}$ standard error in the determination of $\left[\mathrm{Q}^{-}\right.$] was typically within $\pm 15 \%$.

Results and discussion

EPR determination of \boldsymbol{K}_{1}

When Q and QH_{2} were mixed in deaerated buffer, well-resolved multicomponent EPR spectra attributed to Q^{--}were observed. Hyperfine splitting parameters of these spectra were in reasonable agreement with those reported in the literature ${ }^{19,20}$ and are therefore not reported here. With most $\mathrm{Q} / \mathrm{QH}_{2}$ couples the intensity of the EPR spectrum remained constant for at least

Fig. 1 Time dependence of $\left[\mathrm{Q}^{\cdot-}\right.$] in 50 mM phosphate buffer, pH 7.40 , at $37{ }^{\circ} \mathrm{C}$ for the mixtures of 0.5 mM Q 9 and 1 mM QH 29 (plot 1); $25 \mu \mathrm{M} \mathrm{Q} 10$ and $60 \mu \mathrm{M} \mathrm{QH}_{2} 10$ (plot 2); $62 \mu \mathrm{M} \mathrm{Q} 7$ and $60 \mu \mathrm{M} \mathrm{QH}$ 7 (plot 3).

Fig. 2 Plots of K_{1} against DMSO concentration for equilibrium (1) determined in the mixtures of $\mathrm{Q} \mathbf{2}$ with $\mathrm{QH}_{2} 2$ (plot 1); Q 9 with $\mathrm{QH}_{2} 9$ (plot 2); Q 4 with $\mathrm{QH}_{2} 4$ (plot 3); in 50 mM phosphate buffer, pH 7.40 , at $37^{\circ} \mathrm{C}$.
one hour as is exemplified by plot 1 in Fig. 1. This demonstrates that Q and QH_{2} are the only products of Q^{--}disproportionation and thus this reaction is completely reversible. By contrast, the concentration of $\mathrm{Q}^{\cdot-}$ formed in the $\mathrm{Q} 7 / \mathrm{QH}_{2}$ 7 and $\mathrm{Q} 10 / \mathrm{QH}_{2} 10$ systems decreased dramatically with time (plots 2 and 3, Fig. 1) suggesting that reaction (-1) in these cases is not the only pathway of $\mathrm{Q}^{\cdot-}$ decay.

A constant of equilibrium (1), K_{1}, was calculated from $\left[\mathrm{Q}^{-}\right]$by using eqn. (3), where $[\mathrm{Q}]_{0}$ and $\left[\mathrm{QH}_{2}\right]_{0}$ are initial

$$
\begin{equation*}
K_{1}=\left[\mathrm{Q}^{\cdot-}\right]^{2} /\left(\left[\mathrm{Q}_{0}-0.5\left[\mathrm{Q}^{--}\right]\right)\left(\left[\mathrm{QH}_{2}\right]_{0}-0.5\left[\mathrm{Q}^{--}\right]\right)\right. \tag{3}
\end{equation*}
$$

concentrations of the reagents. Typically, K_{1} was determined in four or more separate runs at several concentrations of [Q] and $\left[\mathrm{QH}_{2}\right]$. The K_{1} value was found to be independent of [Q] or $\left[\mathrm{QH}_{2}\right]$. With the $\mathrm{Q} 7 / \mathrm{QH}_{2} 7$ couple, the concentration of Q ${ }^{-}$extrapolated to zero time was used to calculate K_{1}. With the $\mathrm{Q} 10 / \mathrm{QH}_{2} \mathbf{1 0}$ mixture, the starting concentration of Q^{--}was close to the sum of $[\mathrm{Q}]$ and $\left[\mathrm{QH}_{2}\right]$; an exact value of K_{1} could not therefore be calculated.

In some cases K_{1} was determined in aqueous buffer containing a small amount of DMSO that was added to increase the solubility of Q. As is exemplified by Fig. 2, K_{1} increased nearly linearly with [DMSO]. The K_{1} values presented in Table 1 were determined either in solution without DMSO or by using linear extrapolation of the measured K_{1} values to zero concentration of DMSO as shown in Fig. 2. For several $\mathrm{Q} / \mathrm{QH}_{2}$ couples these values may be compared with those reported in ref. $10\left(\mathrm{Q} 1 / \mathrm{QH}_{2}\right.$ 1, Q 2/QH2 2 and $\mathrm{Q} 11 / \mathrm{QH}_{2} 11$) and ref. $11(\mathrm{Q} \mathrm{3/QH} 23)$. The reported values differ from those determined in this

Table 1 Parameters of equilibrium (1) $\mathrm{Q}+\mathrm{QH}_{2} \rightleftharpoons \mathrm{Q}^{\cdot-}+\mathrm{Q}^{\cdot-}+2 \mathrm{H}^{+}\left(K_{1}=k_{1} / 2 k_{-1}\right)$ determined by EPR (K_{1}) and pulse radiolysis $\left(2 k_{-1}\right)$ in 50 mM sodium phosphate buffer

$\mathrm{Q} / \mathrm{QH}_{2}{ }^{\text {a }}$	$K_{1}{ }^{\text {b }}$ at $37{ }^{\circ} \mathrm{C}, \mathrm{pH} 7.4$	$\Delta H_{1} / \mathrm{kJ} \mathrm{mol}^{-1 c}$	K_{1} at $37{ }^{\circ} \mathrm{C}, \mathrm{pH} 7.4$	$2 k_{-1} / 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1 f}$	$k_{1} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$
1	$(8.1 \pm 1.4) \times 10^{-6}$	50 ± 4 (39)	$2.4 \times 10^{-6 d}$	1.6 ± 0.2	1300 ± 400
2	$(3.3 \pm 0.6) \times 10^{-6}$	50 ± 5 (49)	$1.1 \times 10^{-6 d}$	1.35 ± 0.02	450 ± 90
3	$(3.1 \pm 0.7) \times 10^{-6}$	54 ± 6		0.91 ± 0.04	290 ± 80
4	$(8.5 \pm 2.3) \times 10^{-8}$	50 ± 5	$2.2 \times 10^{-8 e}$	0.35 ± 0.17	~ 3
5	$(4.4 \pm 0.9) \times 10^{-7}$	nd		1.15 ± 0.20	50 ± 20
6	$(7.9 \pm 2.2) \times 10^{-7}$	nd		0.38 ± 0.08	30 ± 14
7	$(5.5 \pm 0.7) \times 10^{-2}$	64 ± 8		nd	nd
8	$(2.6 \pm 0.4) \times 10^{-5}$	46 ± 4		0.32 ± 0.03	800 ± 200
9	$(2.6 \pm 0.5) \times 10^{-6}$	54 ± 5		0.54 ± 0.03	140 ± 35
10	>1	nd		nd	nd
11	$(5.2 \pm 1.4) \times 10^{-6}$	nd (57)	$1.0 \times 10^{-5 d}$	2.76 ± 0.10	1400 ± 400

nd - Not determined. ${ }^{a}$ The structures of $\mathrm{Q} / \mathrm{QH}_{2}$ are given in Scheme 1. ${ }^{b}$ Values of K_{1} mean $\pm \mathrm{SD}$ from four or more independent experiments conducted at various concentrations of Q and $\mathrm{QH}_{2} \cdot{ }^{c} \Delta H_{1}$ in parentheses were reported in ref. $10 .{ }^{d}$ Reported in ref. 10 at $25^{\circ} \mathrm{C}$ and recalculated to $37{ }^{\circ} \mathrm{C}$ using ΔH_{1} determined there. ${ }^{e} K_{1}$ reported in ref. 11 at $22^{\circ} \mathrm{C}$ and pH 7.0 and recalculated to $37{ }^{\circ} \mathrm{C}$ and pH 7.4 using $\Delta H_{1}=50 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ and $\mathrm{d}\left(\log K_{1}\right) / \mathrm{d}(\mathrm{pH})=2 .{ }^{f}$ The averaged values determined by pulse radiolysis of Q and QH_{2} at room temperature in our previous work ${ }^{9}$ (see text for more detail).

Fig. 3 Van't Hoff plots of K_{1} determined in phosphate buffer, pH 7.40, for the following couples: Q 4/ $\mathrm{QH}_{2} 4$ (plot 1); Q 9/ $\mathrm{QH}_{2} 9$ (plot 2); Q 3/ $\mathrm{QH}_{2} 3$ (plot 3); Q 1/QH2 1 (plot 4); Q 8/QH2 8 (plot 5).
study typically by a factor of $2-4$; this is not too significant a difference, as it corresponds to the difference in absolute concentration of $\mathrm{Q}^{\cdot-}$ of about 1.5-2 times.

The temperature effect was studied for several $\mathrm{Q} / \mathrm{QH}_{2}$ couples. A steady-state concentration of $\mathrm{Q}^{\cdot-}$ and thus K_{1} increased with increasing temperature (Fig. 3). The determined enthalpies of equilibrium, ΔH_{1}, varied within a rather narrow range from 46 to $64 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Table 1). With $\mathrm{Q}^{--} \mathbf{1}$ and $\mathrm{Q}^{--} \mathbf{2}$, it was possible to compare the ΔH_{1} values determined in this study with those reported in ref. 10; they were in excellent agreement with each other (Table 1). K_{1} was found to rise with pH evidently due to the larger contribution of an ionized form of $\mathrm{QH}_{2}, \mathrm{QH}^{-}$, to equilibrium (1). The linear plots of $\log K_{1}$ against pH with slopes of $2.00 \pm 0.04\left(\mathrm{Q}^{\cdot-} \mathbf{1}\right) ; 1.93 \pm 0.06\left(\mathrm{Q}^{\cdot-}\right.$ 2); $1.91 \pm 0.05\left(\mathrm{Q}^{\cdot-} 9\right)$ were observed (Fig. 4). The slope of nearly 2 is in agreement with previous works (refs. 11, 12, 15) and predicted by the theory for the case when pH is far from the $\mathrm{p} K^{16}$ of QH_{2}.

Determination of $\boldsymbol{k}_{\mathbf{1}}$

The rate constants for reaction (1) between Q and QH_{2} were calculated from the combination of the values of K_{1} determined in this study and $2 k_{-1}$ previously reported, largely in ref. 9.

$$
\begin{equation*}
k_{1}=K_{1}\left(2 k_{-1}\right) \tag{4}
\end{equation*}
$$

The values of k_{1} calculated in this way are given in Table 1. With several $\mathrm{Q}^{\cdot-}$, the $2 k_{-1}$ values measured in ref. 9 via pulse

Fig. 4 Plots of K_{1} against pH determined in phosphate buffer at $37^{\circ} \mathrm{C}$ for the following couples: Q 1/QH2 $1(\bullet), \mathrm{Q} 2 / \mathrm{QH}_{2} 1(\triangle), \mathrm{Q} 9 / \mathrm{QH}_{2}$ 9 (○).
radiolysis experiments with Q and QH_{2} solutions were found to be somewhat different. For this reason and because of the fact that both Q and QH_{2} are present in the system, $2 k_{-1}$ values were averaged for calculations of k_{1}. Although the values of $2 k_{-1}$ used in these calculations were determined at $c a .22^{\circ} \mathrm{C}$ rather than at $37^{\circ} \mathrm{C}$, it is unlikely that the difference in $2 k_{-1}$ between $22^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$ is significant. Previously k_{1} has been reported only for the $\mathrm{Q} 1 / \mathrm{QH}_{2} 1$ couple ($58 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$ and pH 7.0). ${ }^{15}$ To compare this value of k_{1} with that determined in the present work, it has to be recalculated for our conditions. When passing from pH 7.0 to pH 7.4 (with $\mathrm{d}(\log k) / \mathrm{d}(\mathrm{pH})=2$, see Fig. 4), k_{1} will increase 6.3 times; when passing from $25^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}, k_{1}\left(\right.$ with $\Delta H=50 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Table 1)) will increase 2.2 times. Hence, the value of k_{1} reported in ref. 15, being recalculated for our conditions, is expected to equal $58 \times$ $6.3 \times 2.2 \approx 800 \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The latter value is in reasonable agreement with $1300 \pm 400 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ determined in the present study (Table 1). As seen from Table $1, k_{1}$ in the series of methylsubstituted 1,4-benzoquinones/hydroquinones decreases dramatically with the number of methyl groups, i.e. in the direction of decreasing $E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right) ; k_{1}$ also decreases with the volume of alkyl substituent (cf. Q 2 with Q 3 and Q 4). However, k_{1} increases when methyl groups are replaced by methoxy groups ($c f . \mathrm{Q} 5$ with Q 8$)$ despite the decrease in $E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)$.

Calculation of ΔE_{1} and mid-point potential $E\left(\mathrm{Q}^{--} / \mathrm{QH}_{2}\right)$

The change of the one-electron reduction potential in equilibrium (1), ΔE_{1} (in mV), was calculated from K_{1} using the

Table 2 One-electron reduction mid-point potentials (in mV) in the system Q-Q ${ }^{--}-\mathrm{QH}_{2}$ at $25^{\circ} \mathrm{C}$ and pH 7.0

${\mathrm{Q} / \mathrm{QH}_{2}{ }^{a}}^{a}$	$\Delta E_{1}{ }^{b}$	$E\left({\left.\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)^{c}}^{c} E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)\right.$	$E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)^{c}$	
$\mathbf{1}$	-370	+78	+448	+459
$\mathbf{2}$	-391	+23	+414	+460
$\mathbf{3}$	-395	0^{d}	+395	
$\mathbf{4}$	-485	-32^{11}	+453	$+489^{f}$
$\mathbf{5}$	-443	-80	+363	+430
$\mathbf{6}$	-428	-70^{d}	+358	
$\mathbf{7}$	-147	$+470^{e}$	+617	623^{1}
$\mathbf{8}$	-337	-150^{11}	+187	
$\mathbf{9}$	-399	-110^{g}	$\sim+290$	
$\mathbf{1 0}$	>0	$+650^{e}$	$>+650$	$+726^{1}$
$\mathbf{1 1}$	-380	-140	+240	$+212^{2}$

${ }^{a}$ The structures of $\mathrm{Q} / \mathrm{QH}_{2}$ are given in Scheme 1. ${ }^{b}$ Recalculated from data given in Table 1 using an experimental value of ΔH_{1} if available (or $\Delta H_{1}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}$ when not available) and assuming that $\mathrm{d}\left(\log K_{1}\right) /$ $\mathrm{d}(\mathrm{pH})=2 .{ }^{c}$ Taken from ref. 16, unless otherwise indicated. ${ }^{d}$ Estimated based on the correlation of $E\left(\mathrm{Q} / \mathrm{Q}^{--}\right)$with the structures of alkylsubstituted 1,4-benzoquinones reported in refs. 16, 21. ${ }^{e}$ Estimated from the correlation of $E\left(\mathrm{Q} / \mathrm{Q}^{-}\right.$) in aqueous buffer and that in MeCN^{21} (see below). ${ }^{f}$ Calculated on the basis of data reported in ref. 11. ${ }^{g}$ Estimated from the correlation of $E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)$ in aqueous buffer and that in $\mathrm{MeCN}{ }^{22}$

$$
\begin{equation*}
\ln K_{1}=0.0389 \Delta E_{1} \tag{5}
\end{equation*}
$$

Nernst equation. Eqn. (5) shows ΔE_{1} at the standard temperature, $25^{\circ} \mathrm{C}$. The values of ΔE_{1} for the standard conditions $\left(25^{\circ} \mathrm{C}, \mathrm{pH} 7.0\right)$ are given in Table 2. As mentioned above, ΔE_{1} is the difference between two one-electron potentials, $E\left(\mathrm{Q}^{-} / \mathrm{Q}^{\cdot-}\right)$ and $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right) \dagger$ (eqn. (2)). If $E\left(\mathrm{Q}^{-} / \mathrm{Q}^{\cdot-}\right.$) is known, eqn. (2) allows us to calculate the second potential $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ from ΔE_{1}. As a rule, the values of $E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)$ applied to calculate $E\left(\mathrm{Q}^{-}-/ \mathrm{QH}_{2}\right)$ were taken from ref. 16. The values of $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ calculated from ΔE_{1} by eqn. (2) are listed in Table 2. While $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ for $\mathrm{Q}^{\cdot-} \mathbf{1}, \mathrm{Q}^{\cdot-} \mathbf{7}$, and $\mathrm{Q}^{\cdot-} \mathbf{1 1}$ reported in refs. 16 , 23 and those determined in our work were in reasonable agreement, the difference for $\mathrm{Q}^{\cdot-} \mathbf{2}, \mathrm{Q}^{\cdot-} \mathbf{4}$ and Q^{--5} was rather significant (Table 2). It should be noticed that the $E\left(\mathrm{Q}^{--} / \mathrm{QH}_{2}\right)$ values reported in ref. 23 were calculated using a sophisticated protocol rather than directly. With $\mathrm{Q}^{\cdot-} \mathbf{3}, \mathrm{Q}^{\cdot-} \mathbf{6}, \mathrm{Q}^{\cdot-} 8$ and $\mathrm{Q}^{\cdot-}$ 9, the $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ was determined in our work for the first time.

The correlation between various one-electron reduction potentials

By contrast to aprotic organic solvents, direct determination of one-electron reduction potentials, $E\left(\mathrm{Q}^{\prime} / \mathrm{Q}^{\cdot-}\right)$ and $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$, in an aqueous medium using a routine electrochemical technique (polarography or potentiometry) is almost impossible because of the instability of $\mathrm{Q}^{\cdot-}$. Under these circumstances, the determination of $E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)$ and $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ in aqueous solution requires much more complicated non-direct methods, mostly pulse radiolysis and the combination of pulse radiolysis and EPR technique using reference compounds with known reduction potentials. This is probably the reason why the information on $E\left(\mathrm{Q}^{-} / \mathrm{Q}^{\cdot-}\right)$ and especially $E\left(\mathrm{Q}^{{ }^{-}} / \mathrm{QH}_{2}\right)$ in aqueous solution is much more limited as compared to organic solvents. Thus the approach using various correlations for prediction of unknown one-electron reduction potentials in aqueous solution looks very promising. Wardman ${ }^{24}$ has drawn attention to an excellent correlation between $E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)$ determined for methylsubstituted 1,4-benzoquinones in aqueous buffer and those in aprotic organic solvents and the application of the correlation as a promising way to predict $E\left(\mathrm{Q} / \mathrm{Q}^{--}\right)$in water. As Fig. 5
\dagger In principle, the form $E\left(\mathrm{Q}^{\cdot-}, 2 \mathrm{H}^{+} / \mathrm{QH}_{2}\right)$ should be used instead of the short form $E\left(\mathrm{Q}^{-} / \mathrm{QH}_{2}\right)$. For simplicity, we use the short form ignoring protonation in the text.

Fig. 5 The correlation between mid-point potential $E\left(\mathrm{Q}^{\left(\mathrm{Q}^{\cdot-}\right)}\right.$) in aqueous buffer, pH 7.0 , (SHE as a reference electrode) and $E\left(\mathrm{Q}^{-} \mathrm{Q}^{-}\right)$) in acetonitrile (SCE as a reference electrode) for 1,4-benzoquinones (-), 1,4-naphthoquinones (\square), 9,10-anthraquinones (\bigcirc) and miscellaneous compounds (\triangle). Data were taken from ref. 14 and 18 , respectively. Numbers at symbols represent $\mathrm{Q} / \mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}$ structures as they are given in Schemes 1 and 2.
demonstrates, this correlation is also workable for a larger assortment of Q including tert-butyl- and methoxy-substituted benzoquinones, several 1,4-naphthoquinones (NQ), and 9,10anthraquinones (AQ) (see Scheme 2). However, hydroxysubstituted NQ and AQ visibly do not fit this correlation (Fig. 5). Without regard for hydroxy-substituted NQ and AQ , the correlation between $E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)$ in aqueous buffer, pH 7.0 (standard hydrogen electrode, SHE, as a reference electrode), $E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)_{\mathrm{aq}}$, and that in acetonitrile (saturated calomel electrode, SCE , as a reference electrode), $E(\mathrm{Q} /$ $\left.\mathrm{Q}^{\cdot-}\right)_{\mathrm{MeCN}}$, is described by the eqn (6). Reduction potentials

$$
\begin{equation*}
E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)_{\mathrm{aq}}=650+1.1 E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)_{\mathrm{MeCN}} \tag{6}
\end{equation*}
$$

are given in $m V$. Such a correlation may be very useful in estimating $E\left(\mathrm{Q}^{-} \mathrm{Q}^{\cdot-}\right)_{\mathrm{aq}}$ when $E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)_{\mathrm{MeCN}}$ is known. Nearly the same correlation may be suggested with $E\left(\mathrm{Q}^{-} \mathrm{Q}^{\cdot-}\right)$ determined in other organic solvents.

Chambers ${ }^{21}$ reported a linear correlation between $E\left(\mathrm{Q} / \mathrm{Q}^{--}\right)$ determined in acetonitrile and the sum of the Hammett substituent constants, $\Sigma \sigma$, for substituted 1,4-benzoquinones and the related correlation for $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ for substituted 1,4-hydroquinones. A parallel existence of these two linear correlations suggests a linear correlation between $E\left(\mathrm{Q}^{-} / \mathrm{Q}^{-}\right)$ and $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$. The latter is given in Fig. 6. With a few exceptions, the values of $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ and $E\left(\mathrm{Q}^{-} / \mathrm{Q}^{\cdot-}\right)$ demonstrate the excellent correlation for various kinds of Q and QH_{2} that is described by eqn. (7).

$$
\begin{equation*}
E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)=-680+0.81 E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right) \tag{7}
\end{equation*}
$$

From the standpoint of quantum chemistry, the occurrence of this correlation means that, when Q transforms into Q^{--} and $\mathrm{Q}^{\cdot-}$ transforms into QH_{2}, an additional electron falls into the same lowest uncoupled molecular orbital (refs. 21, 22 and references therein). Fig. 7 depicts the same correlation for the case of aqueous solution. Although the general tendency remains the same- $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ decreases when $E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)$ decreases-the quality of the correlation is considerably worse, besides, it becomes non-linear. This is not a surprise since $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ depends on a prototropic equilibrium (characterized by $\mathrm{p} K$) which varies significantly from one QH_{2} to another; the latter results in a different contribution

Q

Q-

QH_{2}

Q

	R^{1}	R^{2}	R^{3}	R^{4}
27	Me	H	H	H
28	OH	H	H	H
29	H	H	OH	H
30	Me	Me	H	H
31	NH_{2}	H	H	H
32	Cl	Cl	H	H
33	OMe	OMe	H	H

R^{1}	R^{2}	R^{3}	R^{4}	R^{5}	R^{6}
H	H	H	H	H	H
H	OH	H	H	H	H
H	$\mathrm{SO}_{3} \mathrm{Na}$	H	H	H	H
Me	H	Me	H	H	H
Me	H	Me	Me	H	Me
$\mathrm{SO}_{3} \mathrm{Na}$	H	H	$\mathrm{SO}_{3} \mathrm{Na}$	H	H
H	$\mathrm{SO}_{3} \mathrm{Na}$	H	H	$\mathrm{SO}_{3} \mathrm{Na}$	H
OH	$\mathrm{SO}_{3} \mathrm{Na}$	OH	H	H	H
OH	H	OH	H	$\mathrm{SO}_{3} \mathrm{Na}$	H

Scheme 2 The structures of quinones, hydroquinones and semiquinones taken into the correlations between various reduction potentials (see Figs. 4-7).
of solvation energy to the reduction potential $E\left(\mathrm{Q}^{--} / \mathrm{QH}_{2}\right)$. Nevertheless, the correlation presented in Fig. 7 may be useful for a rough estimation of unknown values of $E\left(\mathrm{Q}^{--} / \mathrm{QH}_{2}\right)$ when $E\left(\mathrm{Q} / \mathrm{Q}^{--}\right)$is available.

Fig. 6 The correlation between $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ and $E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)$ determined in acetonitrile (SCE as a reference electrode) for 1,4-benzoquinones (\bullet), 1,4-naphthoquinones $(\square), 9,10$-anthraquinones (\bigcirc) and miscellaneous compounds (\triangle). Data were taken from ref. 18. Numbers at symbols represent $\mathrm{Q} / \mathrm{Q}^{-}-/ \mathrm{QH}_{2}$ structures as they are given in Schemes 1 and 2.

Fig. 7 The correlation between mid-potential $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ and $E(\mathrm{Q} /$ Q^{--}) determined in aqueous buffer, pH 7.0 , (SHE as a reference electrode) for benzoquinones (\bullet), 1,4-naphthoquinones (\square), 9,10anthraquinones (O) and miscellaneous compounds (\triangle). Data were taken largely from ref. 14 and partly from Table 2 of the present work. Numbers at symbols represent $\mathrm{Q} / \mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}$ structures as they are given in Schemes 1 and 2.

Redox potentials and the kinetics of $\mathbf{Q H}_{\mathbf{2}}$ autoxidation

Traditionally, the autoxidation of QH_{2} is considered to be triggered by the direct interaction of QH_{2} with molecular oxygen (eqn. (8)). This is a reason why repeated attempts have

$$
\begin{equation*}
\mathrm{QH}_{2}+\mathrm{O}_{2} \longrightarrow \mathrm{Q}^{\cdot-}+\mathrm{O}_{2}^{\cdot-}+2 \mathrm{H}^{+} \tag{8}
\end{equation*}
$$

been made to correlate the oxidizability of QH_{2} with the one-electron potential $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)^{1,2}$ and the two-electron reduction potential $E\left(\mathrm{Q} / \mathrm{QH}_{2}\right) .{ }^{25}$ These attempts had only moderate success and many QH_{2} dropped out of the correlation. Furthermore, reaction (8) is spin-restricted ${ }^{26}$ and is thus expected to be extremely slow under physiological conditions. In addition to this theoretical argument against reaction (8) as a triggering step of QH_{2} autoxidation, experimental counter arguments can be found in the literature. For many types of QH_{2}, e.g. 1,4-hydroquinone, ${ }^{14}$ 1,4-naphthoquinones, ${ }^{27}$ and catecholamines, ${ }^{28} \mathrm{QH}_{2}$ autoxidation was reported to be a selfaccelerated autocatalytic process, with Q being a catalyst. It was shown that the initial step of the oxidation of many QH_{2}

Scheme 3 The structures of quinones (43-47) and ascorbic acid (48) taken into the correlations between various reduction potentials (see Figs. 4-7).
was accelerated by adding $\mathrm{Q} .{ }^{14,28}$ These observations suggest reaction (1) between Q and QH_{2} resulting in the formation of $\mathrm{Q}^{\cdot-}$ to be the main trigger reaction of QH_{2} autoxidation. If it is the case, the efficiency of this process may be characterized by either K_{1}, i.e. the difference $\Delta E_{1}=E\left(\mathrm{Q} / \mathrm{Q}^{\cdot-}\right)-E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$, or, to be more precise, by k_{1}.

To provide support for this view, a correlation between the rate of QH_{2} autoxidation and ΔE_{1} or k_{1} is required. The major problem is the evident shortage in the systematic and comparable kinetic information on the process under consideration. As a rule, we have a chance to correlate the oxidizability of QH_{2} determined within a single work only. For this reason we restrict our consideration to a few remarks and specific examples. Doing this, we should take into account that the rate of QH_{2} oxidation is expected to depend not only on the rate of reaction (1) but also on other factors including the reactivity of Q^{--} towards oxygen in the equilibrium (9). If $E\left(\mathrm{Q}^{-} \mathrm{Q}^{\cdot-}\right)>-150 \mathrm{mV}$,

$$
\begin{equation*}
\mathrm{Q}^{\cdot-}+\mathrm{O}_{2} \rightleftharpoons \mathrm{Q}+\mathrm{O}_{2}^{\cdot-} \tag{9}
\end{equation*}
$$

equilibrium (9) is shifted to the left. ${ }^{29}$ The situation may be altered by adding superoxide dismutase (SOD) that effectively purges the system from $\mathrm{O}_{2}{ }^{--}$. O'Brien ${ }^{1}$ reported the elevated oxidizability of chloro-substituted 1,4-hydroquinones though the values of $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ for these QH_{2} are very high (Table 2). The non-substituted 1,4-benzoquinone for which $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ is also very positive (Table 2) was reported to display rather high oxidizability when SOD was added. ${ }^{14}$ The oxidizability of methyl-substituted 1,4-hydroquinones decreases (with adding SOD) with the increase of the number of methyl groups ${ }^{30}$ although $E\left(\mathrm{Q}^{\cdot-} / \mathrm{QH}_{2}\right)$ becomes less positive in this direction (Table 2). In the meantime, the oxidizability of methylsubstituted 1,4-hydroquinones correlates reasonably with ΔE_{1} and $k_{1} \cdot{ }^{30}$ Besides, the elevated oxidizability of $\mathrm{QH}_{2} 8$ and QH_{2} $\mathbf{1 1}^{1,2}$ is in line with a rather high value of k_{1} (Table 1). Elevated oxidizibility of several other $\mathrm{QH}_{2}{ }^{1,2}$ combines, as a rule, with elevated values of ΔE_{1}. 1,4,5,8-Tetrahydroxynaphthalene $\left(\Delta E_{1}=-95 \mathrm{mV}\right)$, 2,3-dimethoxy-1,4-dihydroxynaphthalene $\left(\Delta E_{1}=-130 \mathrm{mV}\right)$ and adriamycine $\left(\Delta E_{1}=+70 \mathrm{mV}\right)$ are examples of this.

This approach probably may be applied to the oxidation of substrates other than QH_{2}. Ascorbate was reported to oxidize very slowly in the absence of a catalyst and not to display any tendency for autoacceleration of this process. ${ }^{17,18}$ This suggests that the rate of the reaction between ascorbate, AscH^{-}and its oxidized form, dehydroascorbic acid, DAsc, with the formation of the ascorbyl radical, Asc ${ }^{\cdot-}$, (an analog of reaction (1)) is
very low. The latter may be roughly estimated. One-electron reduction potentials $E\left(\mathrm{DAsc} / \mathrm{Asc}^{--}\right)$and $E\left(\mathrm{Asc}^{--} / \mathrm{AscH}^{-}\right)$were reported to be $-174 \mathrm{mV}^{31}$ and $+282 \mathrm{mV}^{16}$, respectively; the rate constant for $\mathrm{Asc}^{\cdot-}$ disproportionation at pH 7.0 is as much as $3 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1} .{ }^{32}$ It is possible to calculate from these data $E\left(\right.$ DAsc $\left./ \mathrm{Asc}^{\cdot-}\right)-E\left(\mathrm{Asc}^{-}-/ \mathrm{AscH}^{-}\right)=-456 \mathrm{mV}$ and $k_{1}=0.7$ $\mathrm{M}^{-1} \mathrm{~s}^{-1}$. Such a low value of k_{1} could explain the main features of AscH^{-}autoxidation.

In conclusion, the above observations strongly suggest that the rate of reaction (1) and the value of ΔE_{1} are the key factors controlling QH_{2} oxidizability.

Acknowledgements

The work was supported by the Volkswagen Stiftung (grant 1/71149), the Deutsche Forschungsgemeinschaft (grant 436Rus $113 / 245 / 0$) and the Russian Foundation for Fundamental Researches (grant 96-03-00103).

References

1 P. J. O'Brien, Chem. Biol. Interact., 1991, 80, 1.
2 A. Brunmark and E. Cadenas, Free Radical Biol. Med., 1989, 7, 435.
3 G. Powis, Free Radical Biol. Med., 1989, 6, 63.
4 P. Rich, Biochim. Biophys. Acta, 1981, 637, 28.
5 E. Cadenas, P. Hochstein and L. Ernster, Adv. Enzymol. Relat. Areas Mol. Biol., 1992, 62, 97.
6 K. E. O'Shea and M. A. Fox, J. Am. Chem. Soc., 1991, 113, 611.
7 I. Wilson, P. Wardman, T.-S. Lin and A. C. Sartorelli, J. Med. Chem., 1996, 29, 1381.
8 M. C. Rath, H. Pal and T. Mukherjee, J. Chem. Soc., Faraday Trans., 1996, 92, 1891
9 V. A. Roginsky, L. M. Pisarenko, C. Michel, M. Saran and W. Bors, J. Chem. Soc., Faraday Trans., 1998, 94, 1835.

10 A. E. Alegria, M. López and N. Guevera, J. Chem. Soc., Faraday Trans., 1996, 92, 4965.
11 J. K. Dohrmann and B. Bergmann, J. Phys. Chem., 1995, 99, 1218.
12 E. J. Land, T. Mukherjee and A. J. Swallow, J. Chem. Soc., Faraday Trans., 1983, 79, 405.
13 V. A. Roginsky, G. Bruchelt and H. B. Stegmann, Biochemistry (Moscow), 1998, 63, 240.
14 P. Eyer, Chem. Biol. Interact., 1991, 80, 159.
15 I. Yamazaki and T. Ohnishi, Biochim. Biophys. Acta, 1966, 112, 469.
16 P. Wardman, J. Phys. Chem. Ref. Data Ser., 1989, 18, 1637.
17 G. R. Buettner, J. Biochem. Biophys. Methods, 1988, 16, 27.
18 V. A. Roginsky and H. B. Stegmann, Free Radical Biol. Med., 1994, 17, 93.
19 K. B. Ulmschneider and H. B. Stegmann, in Landolt-Börnstein New Series, ed. H. Fischer and K. H. Hellwege, Springer, Berlin, 1980, 9d1, 93.
20 D. Klotz, T. Jülich, G. Wax and H. B. Stegmann, in LandoltBörnstein New Series, ed. H. Fischer, Springer, Berlin, 1989, 17g, 69.
21 J. Q. Chambers, in The Chemistry of the Quinoid Compounds, Part 2, ed. S. Patai, 1974, Wiley, London, p. 738.
22 M. Knüpling, J. T. Törring and S. Un, Chem. Phys., 1997, 219, 291.
23 K. Sugioka, M. Nakano, H. Totsune-Nakano, H. Minakami, S. Tero-Kumota and Y. Ikegami, Biochim. Biophys. Acta, 1988, 936, 377.

24 P. Wardman, Free Radical Res. Commun., 1990, 8, 219.
25 Y. A. Ilan, G. Czapski and D. Meisel, Biochim. Biophys. Acta, 1976, 430, 209.
26 D. G. Graham, S. M. Tiffany, W. R. Bell and W. F. Gutknecht, Mol. Pharmacol., 1978, 14, 644.
27 D. M. Miller, G. R. Buettner and S. D. Aust, Free Radical Biol. Med., 1990, 8, 95.
28 T. Ishi and I. Fridovich, Free Radical Biol. Med., 1990, 8, 21.
29 V. A. Roginsky, T. K. Barsukova, G. Bruchelt and H. B. Stegmann, Z. Naturforsch., Teil C, 1997, 52, 380.

30 V. A. Roginsky, T. K. Barsukova and L. M. Pisarenko, unpublished work.
31 G. R. Buettner, Arch. Biochem. Biophys., 1993, 300, 535.
32 B. H. J. Bielski, A. O. Allen and H. A. Schwarz, J. Am. Chem. Soc., 1981, 103, 3516.

Paper 8/07650B

